Organelle tethering by a homotypic PDZ interaction underlies formation of the Golgi membrane network
نویسندگان
چکیده
Formation of the ribbon-like membrane network of the Golgi apparatus depends on GM130 and GRASP65, but the mechanism is unknown. We developed an in vivo organelle tethering assaying in which GRASP65 was targeted to the mitochondrial outer membrane either directly or via binding to GM130. Mitochondria bearing GRASP65 became tethered to one another, and this depended on a GRASP65 PDZ domain that was also required for GRASP65 self-interaction. Point mutation within the predicted binding groove of the GRASP65 PDZ domain blocked both tethering and, in a gene replacement assay, Golgi ribbon formation. Tethering also required proximate membrane anchoring of the PDZ domain, suggesting a mechanism that orientates the PDZ binding groove to favor interactions in trans. Thus, a homotypic PDZ interaction mediates organelle tethering in living cells.
منابع مشابه
Yeast homotypic vacuole fusion requires the Ccz1–Mon1 complex during the tethering/docking stage
The function of the yeast lysosome/vacuole is critically linked with the morphology of the organelle. Accordingly, highly regulated processes control vacuolar fission and fusion events. Analysis of homotypic vacuole fusion demonstrated that vacuoles from strains defective in the CCZ1 and MON1 genes could not fuse. Morphological evidence suggested that these mutant vacuoles could not proceed to ...
متن کاملIsoform-specific tethering links the Golgi ribbon to maintain compartmentalization
Homotypic membrane tethering by the Golgi reassembly and stacking proteins (GRASPs) is required for the lateral linkage of mammalian Golgi ministacks into a ribbon-like membrane network. Although GRASP65 and GRASP55 are specifically localized to cis and medial/trans cisternae, respectively, it is unknown whether each GRASP mediates cisternae-specific tethering and whether such specificity is ne...
متن کاملThe yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER
Formation of the fi rst compartment of the Golgi apparatus involves recognition events between several different membranes. These include tethering of both anterograde COPII vesicles and retrograde COPI vesicles to the cis-Golgi. In addition, intermediate compartment structures that formed in the cell periphery fuse with the cis-Golgi membranes after movement to the cell center, and Golgi stack...
متن کاملMembrane Tethering Complexes in the Endosomal System
Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the class C core vacuole/endosome tethering (CORVET) complex, while fusion of late endosomes with lysosomes depends on the homotypic fusion and vacuole protein s...
متن کاملPICK1 is implicated in organelle motility in an Arp2/3 complex–independent manner
PICK1 is a modular scaffold implicated in synaptic receptor trafficking. It features a PDZ domain, a BAR domain, and an acidic C-terminal tail (ACT). Analysis by small- angle x-ray scattering suggests a structural model that places the receptor-binding site of the PDZ domain and membrane-binding surfaces of the BAR and PDZ domains adjacent to each other on the concave side of the banana-shaped ...
متن کامل